Proof Transformation with Built-in Equality Predicate
نویسندگان
چکیده
One of the main reasons why computer generated proofs are not widely accepted is often their complexity and incomprehensibility. Especially proofs of mathematical theorems with equations are normally presented in an inadequate and not intuitive way. This is even more of a problem for the presentation of inferences drawn by automated reasoning components in other Al systems. For first order logic, proof transformation procedures have been designed in order to structure proofs and state them in a formalism that is more familiar to human mathematicians. In this report we generalize these approaches, so that proofs involving equational reasoning can also be handled. To this end extended refutation graphs are introduced to represent combined resolution and paramodulation proofs. In the process of transforming these proofs into natural deduction proofs with equality, the inherent structure can also be extracted by exploiting topological properties of refutation graphs.
منابع مشابه
Order-Sorted Equality Enrichments Modulo Axioms
Built-in equality and inequality predicates based on comparison of canonical forms in algebraic specifications are frequently used because they are handy and efficient. However, their use places algebraic specifications with initial algebra semantics beyond the pale of theorem proving tools based, for example, on explicit or inductionless induction techniques, and of other formal tools for chec...
متن کاملBehavioural Theories and The Proof of Behavioural
Behavioural theories are a generalization of rst-order theories where the equality predicate symbol is interpreted by a behavioural equality of objects (and not by their identity). In this paper we rst consider arbitrary behavioural equalities determined by some (partial) congruence relation and we show how to reduce the behavioural theory of any class of-algebras to (a subset of) the standard ...
متن کاملProving Theorems by Program Transformation
In this paper we present an overview of the unfold/fold proof method, a method for proving theorems about programs, based on program transformation. As a metalanguage for specifying programs and program properties we adopt constraint logic programming (CLP), and we present a set of transformation rules (including the familiar unfolding and folding rules) which preserve the semantics of CLP prog...
متن کاملA Finitely Axiomatized Formalization of Predicate Calculus with Equality
We present a formalization of first-order predicate calculus with equality which, unlike traditional systems with axiom schemata or substitution rules, is finitely axiomatized in the sense that each step in a formal proof admits only finitely many choices. This formalization is primarily based on the inference rule of condensed detachment of C. A. Meredith. The usual primitive notions of free v...
متن کاملA Finitely Axiomatized Formalization of Predicate Calculus with Equality
We present a formalization of first-order predicate calculus with equality which, unlike traditional systems with axiom schemata or substitution rules, is finitely axiomatized in the sense that each step in a formal proof admits only finitely many choices. This formalization is primarily based on the inference rule of condensed detachment of C. A. Meredith. The usual primitive notions of free v...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1991